لعلم المثلثات تطبيقات كثيرة، منها حساب المسافات والزوايا في إنشاء المباني
والطرق وفي صناعة الموتورات وأجهزة التلفزيون والأثاث وملاعب الكرة ،
وكذلك وفي حساب المسافات الجغرافية و الفلك ، وفي أنظمة الاستكشاف بالأقمار
الصناعية .
يكون مثلثان متشابهان إذا كانت الزوايا المتقابلة من كل منهما متساوية، أي عندما ينتج أحدهما عن الآخر بتكبيرة أو تصغيره . وتكون أطوال أضلاع المثلثين المتشابهين متناسبة. أي انه إذا كان طول أقصر اضلاع المثلث الأول ضعف طول أقصر اضلاع المثلث الثاني ، فان طول كل من الضلعين الأطول و المتوسط من المثلث الأول يكون ضعف طولي الضلعين الأطول و المتوسط من المثلث الثاني أيضا، و بالتالي فان النسبة بين طولي الضلعين الأقصر و الأطول في المثلث الأول مساوية للنسبة بين طولي الضلعين الأقصر و الأطول في المثلث الثاني.
اعتمادا على هذه القوانين ، من الممكن تعريف التوابع المثلثية، مستخدمين المثلث القائم. وهناك القانون القائل انه إذا تساوت زاويتان في مثلثين قائمين ، فان هذين المثلثين متشابهان ، و تكون النسبة بين الضلع المقابلة للزاويتين المتساويتين، وتر كل من المثلثين (الضلع المقابلة للزاوية القائمة) متساوية بالنسبة لكل من المثلثين و تعتمد فقط على قيمة الزاوية، و ستكون عددا بين 0 و 1، تدعى هذه النسبة بجيب الزاوية. بشكل مماثل، يمكن تعريف تجيب الزاوية على أنها النسبة بين الضلع المجاور لها و الوتر.
جيب زاوية = المحور الصادي
تجيب تمام زاوية = المحور السيني
تابعا الجيب و الجيب هما أهم التوابع المثلثية، هناك أيضا توابع أخرى تعرف باخذ نسب أخرى من اضلاع المثلث القائم، أو نسب من التابعين الأساسيين جيب و تجيب، هذه التوابع هي: طل، تطل، قا، و تقا.
ظل الزاوية = جيب الزاوية/ جيب تمام الزاوية ظل تمام الزاوية = جيب تمام الزاوية / جيب الزاوية قا (قاطع) = 1 / جتا يه قاطع تمام (قتا) = 1 / جيب بهذا نكون قد عرفنا التوابع المثلثية للزوايا من 0 إلى 90، من الممكن توسيع تعريفنا ليشمل كل القيم الحقيقية للزوايا باستخدام الدائرة الواحدية.
عند إمكانية حساب التوابع المثلثية (من جداول أو الآلة الحاسبة) و معرفة قيم ضلع و زاويتين أو ضلعين و زاوية أو ثلاثة اضلاع من المثلث، يمكن إيجاد قيم باقي عناصر المثلث (زوايا و اضلاع) باستخدام قوانين الجيب و قوانين جيب تمام .
هذا بخصوص حساب المثلثات المستوية . وهناك فرع لا يقل أهمية عنه وهو حساب المثلثات علي السطح الكري ، وهذا الفرع مهم بصفة خاصة في الفلك وفي الملاحة
التصاميم الإبداعية المجنونة لمهندسي العمارة ...
يكون مثلثان متشابهان إذا كانت الزوايا المتقابلة من كل منهما متساوية، أي عندما ينتج أحدهما عن الآخر بتكبيرة أو تصغيره . وتكون أطوال أضلاع المثلثين المتشابهين متناسبة. أي انه إذا كان طول أقصر اضلاع المثلث الأول ضعف طول أقصر اضلاع المثلث الثاني ، فان طول كل من الضلعين الأطول و المتوسط من المثلث الأول يكون ضعف طولي الضلعين الأطول و المتوسط من المثلث الثاني أيضا، و بالتالي فان النسبة بين طولي الضلعين الأقصر و الأطول في المثلث الأول مساوية للنسبة بين طولي الضلعين الأقصر و الأطول في المثلث الثاني.
اعتمادا على هذه القوانين ، من الممكن تعريف التوابع المثلثية، مستخدمين المثلث القائم. وهناك القانون القائل انه إذا تساوت زاويتان في مثلثين قائمين ، فان هذين المثلثين متشابهان ، و تكون النسبة بين الضلع المقابلة للزاويتين المتساويتين، وتر كل من المثلثين (الضلع المقابلة للزاوية القائمة) متساوية بالنسبة لكل من المثلثين و تعتمد فقط على قيمة الزاوية، و ستكون عددا بين 0 و 1، تدعى هذه النسبة بجيب الزاوية. بشكل مماثل، يمكن تعريف تجيب الزاوية على أنها النسبة بين الضلع المجاور لها و الوتر.
جيب زاوية = المحور الصادي
تجيب تمام زاوية = المحور السيني
تابعا الجيب و الجيب هما أهم التوابع المثلثية، هناك أيضا توابع أخرى تعرف باخذ نسب أخرى من اضلاع المثلث القائم، أو نسب من التابعين الأساسيين جيب و تجيب، هذه التوابع هي: طل، تطل، قا، و تقا.
ظل الزاوية = جيب الزاوية/ جيب تمام الزاوية ظل تمام الزاوية = جيب تمام الزاوية / جيب الزاوية قا (قاطع) = 1 / جتا يه قاطع تمام (قتا) = 1 / جيب بهذا نكون قد عرفنا التوابع المثلثية للزوايا من 0 إلى 90، من الممكن توسيع تعريفنا ليشمل كل القيم الحقيقية للزوايا باستخدام الدائرة الواحدية.
عند إمكانية حساب التوابع المثلثية (من جداول أو الآلة الحاسبة) و معرفة قيم ضلع و زاويتين أو ضلعين و زاوية أو ثلاثة اضلاع من المثلث، يمكن إيجاد قيم باقي عناصر المثلث (زوايا و اضلاع) باستخدام قوانين الجيب و قوانين جيب تمام .
هذا بخصوص حساب المثلثات المستوية . وهناك فرع لا يقل أهمية عنه وهو حساب المثلثات علي السطح الكري ، وهذا الفرع مهم بصفة خاصة في الفلك وفي الملاحة
التصاميم الإبداعية المجنونة لمهندسي العمارة ...
الأستادات و المجمعات الرياضية الاولمبية الهائلة ...
إبــــدااااع الخـــالق سمكة ...
مهندس الجرافيكـ يستخدم التفاضل و التكامل لتحديد مدى اختلاف
و تغير النماذج ثلاثية الأبعاد...
إبداع الخالق في جسم الإنسان الأنف و الكبد ..
إبداااااع الخالق في النباتات ...
قال تعالى :"فبأيّ آلآء ربكمـــــا تكذبــــــان"
ليست هناك تعليقات:
إرسال تعليق
تم ارسال تعليق